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A new probabilistic approach is described which can improve the reliability of the triplet relation- 
ships. The terms IEKI, IEHx+KI, IEH1+~2+KI are tested in order to give the probability of the sign of 
EH~En2Enx+ n2 rather than the 'ex~tct' value of the invariant, as made in preceding approaches, e.g. 
B3,0 formula [Karle & Hauptman, Acta Cryst. (1958), 11, 264-269] the modified triple product 
[Hauptman, Acta Cryst. (1964), 17, 1421-1433; Hauptman, Fisher, Hancock & Norton, Acta Cryst. 
(1969), B25, 811-814] and M-D-K-S  formula [Hauptman, New Orleans Meet. Amer. Cryst. Assoc., 
2 March. (1970), Abstract B8]. 

1. Introduction 

The most widely used direct method for solving crys- 
tal structures is based on the use of the phase rela- 
tionship 

sin (~0h + <p~, -- ~Oh + k) -- 0 .  (1) 

(1) leads to ~2 and tangent formulae (Karle & Haupt- 
man, 1953, 1958) which are able to extend and refine 
a number of plausible basis sets of phases. The process 
is a 'stepwise' one: the procedures usually introduce a 
number of ambiguities, assigning them initial numerical 
values and proceeding with tangent refinement and ex- 
tension. Completely wrong answers, nevertheless, may 
result when one or more 'bad' triplets [i.e. triplets for 
which (1) is violated] occur in the early stages of the 
process. Four different ways are currently used for 
overcoming this difficulty. 

(1) Increase of the number of ambiguities in the basic 
set of phases. Unfortunately the size of the starting 
set is limited by the number of the phase combina- 
tions it is practical to explore. 

(2) Enlargement of the starting set by the introduc- 
tion of a number of phases previously determined. In 
order to achieve this, several additional formulae may 
be used: we quote the ~1 formula (Karle & Hauptman, 
1953), strengthened ~ formulae (Giacovazzo, 1975a), 
the coincidence methods (Grant, Howells & Rogers, 
1957; Debaerdemaeker & Woolfson, 1972). 

(3) The 'magic integers' approach (White & Woolf- 
son, 1975; Declercq, Germain & Woolfson, 1975). The 
method is not a 'stepwise' one and should not be too 
sensitive to 'bad' triplets in the early stages of the 
procedure. 

(4) The quartet method (Schenk, 1974; Hauptman, 
1975a, b; Green & Hauptman, 1976; Hauptman & 
Green, 1976; Giacovazzo, 1975b, 1976a, b, e). When 
triplet and quartet relationships are used concurrently 
in the procedures for the crystal structure solution, a 
larger number of reliable relations are available, thus 
decreasing the probability of using 'bad'  relations in 
the early stages of the process. 

All the above mentioned methods may reduce the 

influence of the 'bad' triplets but are not able to identify 
them. It seems then that the procedures based on the 
cosine invariant computation (Hauptman, Fisher, 
Hancock & Norton, 1969; Hauptman, Fisher & Weeks, 
1971) could play an important role in the process for 
the solution of complex crystal structures. From a for- 
mal point of view the method has the great advantage 
of using all the structure factors in the phase genera- 
tion: for example (Karle & Hauptman, 1957) 

IEhiEhzEh3l cos (~0hl + ~0h2 + ~0h3) 

~(N3/Z/2) ((IEkl z -  1) (IEh,+kl z -  1) (IE_h3+kl z -  1))k 

+ N-I/2(IEhll z + [Ehz[ z + IEh3[ z -  2),  (2) 

where h' = ha or hz and hx + he + h3 --- 0. 
Relation (2) is formally able to give the exact value 

of the invariant phase rather than equating it to zero 
as is done in the tangent method. (2) however, is exact 
only when the structure consists of N identical point 
atoms and when no rational dependence of atomic 
coordinates occurs. Its practical application therefore 
requires some conditions whose nature deserves to be 
discussed. Formally speaking, the measure of the 
cosine invariant may be obtained just by allowing the 
k vector to range uniformly throughout reciprocal 
space. As all the computed averages are, of necessity, 
only estimates of the true averages and are based on 
the finite number of data available from the experi- 
ment, the problem of the variance caused by the finite 
sampling may constitute a severe restriction. A partial 
answer to this problem was given by Hauptman, 
Fisher, Hancock & Norton (1969) who proposed the 
phase relation 

IEh,Eh2Eh3[ COS (~0h, + ~0h2 + ~0h3) 

~-- G((IEkl ' /2-  (IEI1/2)) (]gh, +k] 1/2 

-(]Ell /Z))  (IE_h3+klm--(IEl'/Z)))k + R3 , 
where 

0" 3 
R 3 -- 4-~z/z [~(IEhlEh2] 2 + ]Eh2Eh3l 2 + IEh3Ehll 2) + ]Ehl] 2 

+ [Ehzl z + IEh3[ 2--~], 

(IEI 1/2) = (IEkll/2)k, and G is an empirical scale factor. 
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The sampling problem nevertheless was still un- 
solved. Its importance is the more relevant since the 
computation of the cosine invariants is time consum- 
ing even on very fast computers. Thus approximate 
formulae are widely used which make various restric- 
tions on the range of k (Karle, 1970; Hauptman, 
Fisher & Weeks, 1971). The most recent is the 
M ( D - K S )  formula (Hauptman, 1970; Fisher, Han- 
cock & Hauptman, 1970): 

where 
COS ((~h I "~ ~h 2 "3 !- ~h3) = M ( D - K S ) ,  

~3miD i 
D = -!-I . . . . . . .  

l = l  

O,= ((IE_h,+kl 2 -  1) ]lEkl > t, Ig~j+kl > t )k ,  

i=  1,2,3; j=2,3 ,1  , 

3 n~S~ 

S._~ l=t 
~ 3  nt 
1=1 

S,=2((IE-h,+kl 2 -  1)[ IEkl > t ) k ,  

t is an arbitrary number exceeding unity and K and 
M are empirical parameters dependent on the distribu- 
tion of the invariant cosines. Even if the M ( D - K S )  
formula improves the preceding ones, it is not able 
to estimate the variance of the computed cosines: so 
cosine values exceeding unity are unfortunately fre- 
quent. 

So far we have stressed just one aspect of the sam- 
piing problem, that is 'given the finite number of ex- 
perimental available data, what is the reliability of the 
calculated cosine invariant when we average over in- 
dices of specific combinations of the structure fac- 
tors?' An answer to this problem, of course, can only 
be given by means of probabilistic methods. Now a 
more interesting problem is whether the probability 
methods are able to answer this more subtle question: 
'The expected value of cos (~0hx + ~h 2 21- ~h 3) is given by 
(Hauptman, 1972) 

lx(C) 
(COS (~h l  + ~h 2"21- ~h3) ) - -  i o ( a  ) , 

where 
G = 2IEhzEh2Eh31/ I/ N , 

and the variance by 

Ix(G) 
var [cos (~0h~ + qh2 + ~0h3)] = 1 -- GIo(G) 

. . . .  i ~ o ( a )  • 

If we are able to provide an answer to this question 
the immediate consequence is the well grounded hope 
of moderating in a simple way the disastrous influence 
of the negative cosines during the phase determining 
process. In fact the theory should permit us to use direct- 
ly in the tangent formula a value of G which uses also 
the information contained in all reciprocal space. This 
new value of G may in principle even reverse the posi- 
tivity required by the expected cosine value defined by 
the triplet relationship. This probabilistic approach 

(3) should present further advantages in the multisolution 
procedures. The more accurate value of G in fact should 
allow a better choice of the starting set of reflexions 
by the convergence method (Germain, Main & Woolf- 
son, 1970) and should improve the accuracy of the final 
phases obtained by refinement with the tangent for- 
mula (Busetta & Comberton, 1974). 

In conclusion, in accordance with our new proba- 
bilistic point of view, all the information provided by 
the cosine invariant computation method should yield 
the expected value of the cosine invariant and its vari- 
ance, rather than the 'exact' value of the cosine, whose 
estimate is in practice unobtainable given the finite 
number of experimentally available data. If (4) and 
(5) remain formally valid in this probabilistic ap- 
proach some consequences of the method may be: 
(1) The expected values of the cosine invariant will al- 
ways be allowed values, i.e. ](cos tphl + @h 2 "]- ~h3) I < 1. 
The values of the variance will always be positive: the 
confidence in the expected value of the cosine will be 
derived from the experimental data and not defined 
a priori (see Busetta & Comberton, 1974). (2) The 
ability to calculate the expectation value of a cosine 
invariant, whatever the number of combinations ]Ek[, 
IEu~+uI, IE-u3+ul may be, allows us to make various 
restrictions on the range of k, thus saving computing 
time. (3) The increased effectiveness of the tangent 
procedure for the determination of initial phases should 
reduce the computing time required to implement the 
least-squares procedure suggested by Hauptman et al. 
(1969) in the early stages of the phasing procedure. It 
may be noted, moreover, that this new type of direct 
approach to the phase problem opens new prospects 
in the problem of enlarging the starting set. In fact 
probabilistic considerations similar to those here de- 
veloped for the cosine invariant cos (~0hx + ~h2 + ~0~3) are 

(4) applicable to other invariants and seminvariants whose 
usefulness in the direct process for phase determina- 
tion has been proved. Our unpublished results ob- 
tained in this field are sufficient to encourage their use 
in the procedures for the solution of large structures. 

(5) 

In what way does the value of the single triple (]Ek[, 
IEul+uI, IE-u3+kl) change the effective value of G as 
given by the triplet relationship alone?' 

2. The mathematical preliminaries 

The method to be described requires the derivation of 
a variety of conditional probability distributions. If 
we denote by P(Ex,  Ez . . . .  ,En) the joint probability 
function of n normalized structure factors, its charac- 
teristic function (Klug, 1958) may be expanded in a 
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Gram-Charlier series: 

C(ul, u2 . . . .  , u,) = exp [-½(u z + u~ + . . .  + u,Z)] 

× [1 + S3/t 3/2 + (S4/t z + S~/2t 3) + (SjtS/2 + $3S4/t 7/2 

+ S]/6t9/2) + . . . ] , (6) 

where u~,i= 1 , . . . , n  are carrying variables associated 
with E~, t is the number of independent atoms in the 
unit cell, 

"~rs W 
Sv = t +~+.~+ ~__~ r !7i~ ~'_w! (iu~)~(iu~)~. . . (i~,)w, 

and 

2.s -- K~s...~ 
...w m(r+s+.. .+w)/2 • 

Kr~...~ are the cumulants of the distribution and m is 
the order of the space group. To obtain the proba- 
bility distribution P(E~,Ez,. . . ,E,),  the formula 

2nl g ~  (iu) ~ exp [ - - ½ U  2] exp [ - i ux ]du=  Hv(x)~o(x) 

finds frequent application. Here ~0(x) is the standard- 
ized Gaussian function 

~o(x) = (2n) -a/2 exp ( -xZ/2) ,  

and H~(x) is the Hermite polynomial of vth order de- 
fined by the equation 

H~(x)=(-1)  v exp ~-~- exp [ -  ½x2]. 

3. The joint probability distribution P(EH1,EH2 , 
EH1 + H 2 ' E K ' E H I  + K'EH1 + H 2 + K) 

We introduce the abbreviation 

E.=EH1, Ez= EH,, E~=E..+Hv E,= E~, 
E ~ = E . I + K ,  E~=EH~+H~+K • 

In order to determine (6) we find 

1 
S J t 3 n -  ~N [(iux) (iu2) (iu3) + (iuO (iu4) (ius) 

+ (iu2) (ius) (iu6)+ (iu3) (iu4) (iu6)] , 

1 
$4/ t2  - 8N [ ( iu l )4  + (iu2)4 + ' ' "  + (iu6)4] 

1 
+ -~ [(iul) (iu2) (iu4) (i%) 

+ (iu2) ( iu3) ( iu4) (ius) 

+ (iul) (iu3) (iu5) (iu6)], 

1 
Ss/ts/z- 2Nl/N[(iuO3(iuz) (iu3) 

+ (iul) (iuz)3(iu3) + (iuO (iu2) (iu3) 3 

+ (iul)3(iu4) (iu5) + cyclic terms 

+ (iuz)3(ius) (iu6) + cyclic terms 

+ (iu3)3(iu4) (iu6) + cyclic terms]. 

969 

The form of the probability distribution function 
P(E1,Ez . . . .  ,E6) is shown in Appendix A. From the 
calculations there performed we obtain 

where 

and 

P+(EHaEu2EH~+H2)~-{+½ tanh Gn,,n2, (7) 

1 
GHI'H2= ]/m [EHxEH2ErlI +H2] 

A = ( E ~ -  1) (E2t+K - 1) (E2~+H2+K - 1)/N 

B = 1 -]-[(E2K - 1) ( E 2 1 + K  1 ) - { - ( E  2 l )  E 2 - - ( H I + H 2 + K - -  1) 

+ (E2a+K - 1) (E2,+H2+K-- 1)+ 3]/N 

-- [H4(EK) + H4(Eu, + K) + Ha(En,+H2+K)]/8N. 

Formally speaking, (7) preserves the tangent formula- 
tion provided by the Cochran-Woolfson relation 

1 
P+ -~ ½+~- t a n h - ~  [EnxEn2EH, +H21, (8) 

but seems able to improve (8) when one or more 
triples ([EKI, IEn~+KI, IEua+n2+K[) are known a priori. 

In particular, knowledge of the moduli [EK[, 
IEnl+K[, [EHI+H2+KI affects the probability values pro- 
vided by (8) for the triplet EnvEHz, EHt+H2 in terms 
of the ratio A/B. This ratio is of order 1/NI/N: so, 
when N is large enough, knowledge of only a single 
triple ([EKI, IEtlI+KI, IEHI+H2+K[ ) is not able to modify 
significantly the probability values provided by the 
Cochran-Woolfson formula. However, for fixed H1 
and H2 vectors, numerous triples K, H~ + K, H~ + H2 + K 
exist in general in the set of measured reflexions; it 
seems useful then to study more general probability 
distributions which are able to take into account a 
larger number of contributors. 

4. The joint probability distribution P(EHx,EH2,EHI +H2, 

EK19EH 1 + K1,EH 1 + H 2 + K1,EK2,EH 1 + K2,EH 1 + H 2 + K2, • * • 

The study of this distribution leads us once more to (7), 
but now 

A~ ~ (E~,- 1) (E~,+K 1) E 2 - - ( H,+U2+K--1)/N, (9) 
K 

B_~ 1 + ~ [(E~,- 1) (E~, + , -  1) + ( E ~ -  1) 
K 

2 × (EHl+rh+g-- 1)+(E~I+K-- 1) 

+ (E2H,+H2+K - 1)]/N 

- -  ~ [H,(EK)+ H4(EH,+K)+ H4(EH,+H2+K)]/8N. 
K 

(lo) 

If the summations in (9) and (10) involve a sufficient 
number of triples (EK, EHI+K, Eul+H2+K) (7) may 
strongly affect the positivity required by (8). Thus 
triplets whose signs are defined to be negative by (7) 
with high probability should be particularly useful in 
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the procedures for phase solution retaining their char- 
acter of negativity. In these cases 

S(EH, +n2) ~ - S(En,)S(EH2). 

From now on when we refer to (7) it will be under- 
stood that A and B are defined by (9) and (10). 

5. The estimation of A and B 

From the algebraic form of (7) one should deduce 
that triplets strongly defined to be positive are marked 
by large positive values of A and small values of B. 
Triplets strongly defined to be negative will arise from 
large negative values of A and small values of B. On 
the other hand large positive values of A and B 
should not greatly affect the Cochran-Woolfson rela- 
tion. 

If we write 
B = I + Q ,  

we observe that the function A/B presents a discon- 
tinuity when Q = -  1. This behaviour has no physical 
meaning and is due to including in (7) only terms up 
to 1IN 3/z. In fact we have represented the probability 
distributions as asymptotic Gram-Charlier  series and 
the actual values of probability we obtain will be cor- 
rect to the degree of approximation we choose. 

In order to understand the role played by each of 
the summations in A and B it seems useful to derive, 
given a triplet En,,Ea2,Ea,+rjz, their expected values. 
If the summations in (9) and (10) involve a large num- 
ber of terms, their estimates will be related to the fol- 
lowing mean values: 

((E~- I) (E~h+,~-- I) (E~,+H2+,~- I)> 
8 EH1EHzEnl+H2 

~- f i  NI/N ' (11) 

- - (En,+H2+K--1) 

+ (Eh,+K-- 1) (EZnx+n2+~ - 1)> 

_2 (E~x + E~n2 + EZ +H2_ 3) 
P 

x + NI/N ] , (12) 

9 
- -  ( 1 3 )  

where P is a function of EHI,EH2, EHI+H 2 n o t  defined 
because it is not relevant for our present purpose. 

Whereas (11) clarifies the meaning of A (its sign 
should coincide with that of EHxEn2Enl+H2), suitable 
estimation of B requires some observations. (a) The 
first term of (12) depends on the sign of EHxEnzEH, +H2: 
in particular, it should assume small values when that 
sign is negative. This behaviour suggests that negative 
triplets should be marked by large negative values of 
(11) and small positive values of (12), so giving rise 

to strong corrections of the Cochran-Woolfson for- 
mula. (b) If N is large enough and E ~  + E ~ 2 + E ~ I + H  2 
>3,  the value of (12) is always positive. One should 
then set the first term of (12) equal to zero when it 
has been calculated negative. (c) The estimation of 
(13) involves Hermite polynomials of order four. The 
values of these polynomials are also sensitive to ex- 
perimental errors in the estimation of the IEl's (see 
Fig. 1). Furthermore, (13) does not contain any in- 
formation on the sign of En~EH2EHa+H2 . Its estimation 
therefore may be omitted in the procedures for phase 
solution, as much in the interest of simplification as 
in the expectation that its effect will be negligible. 

6. Strengthened ~x relationship 

From the joint probability distribution P(EmE2H, E,~, 
EH+I~,E2H+,~) we obtain 

P+[(EZn-1)E2H]'~0.5 

+0.5 tanh I (E~-1 )Eml  ( C )  
2V N 1+ , (14) 

where 

c _2 1) (Eh+,,-1) 1)/N, 
K 

D ~ l + { 2  ~ [ ( E ~ -  1) (E~+K-- l) 
K 

+ (E~,+K-- I) (E~H+K-- I)] 

+ ~ (E~- I) (E~H+K-- I)}/N. 
K 

(14) is derived in Appendix B. 

7. Experimental results 

Four model structures (P1) have been used in order 
to test (7). The first contains 35 atoms at random posi- 
tions in the asymmetric unit (N= 70); the second, third 

H4 

~ IEI 

\ 
Fig. 1. The Hermite polynomial of order four plotted in the 

range of the observed IErs. 
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and four th  structures contain 100, 200, 300 atoms in 
the unit cell respectively. In Tables 1-4 the reliability 
of  (7) is compared  with that  of  the Cochran-Wool f son  tanh 
relation (8): ~ l  relations were excluded f rom the cal- largl 
culations. In accordance with the observations made 0.6 
in § 5, the value of B is calculated omitting the Hermite  0.8 
polynomials  of  order four. In the tables the number  1.0 

1.2 of  relations and the percentage of  correct ones are 1.4 
given along with the corresponding values of  the ar- 1.6 
guments of  the hyperbolic tangent.  As may  be ob- 2.0 
served, the percentages of  correct relations calculated 2.4 
by (7) are markedly  better than  the percentages ob- 2.8 

3.2 
tained by the Cochran -Wool f son  formula.  Our  ap- 3.4 
proach seems then advisable in the more difficult struc- 
tures where (8) may  fail. 

Table 1. Number of  triplet relations (nr) and percentage 
of  correct relations for a 70-atom model structure 

tanh Equation (8) Equation (7) Equation (15) 
largl nr. % nr. % nr. % 
0-6 1099 92.4 982 96"7 967 96.9 
0.8 951 94-1 868 98.7 888 97.7 
1.0 578 96.7 708 99.6 779 99.0 
1.2 348 98-9 529 100 651 99.5 
1.4 170 99.4 380 100 504 99.8 
1.6 77 100 242 100 379 I00 
2.0 13 100 97 100 189 100 
2"4 4 100 36 100 95 100 
2.8 9 100 40 100 
3.2 1 100 18 100 
3-4 10 100 

Table 2. Number of  triplet relations (nr) and percentage 
of correct relations for a l O0-atom model structure 

tanh Equation (8) Equation (7) Equation (15) 
largl nr. % nr. % nr. % 
0"6 1319 92"1 1265 96"0 1242 96"4 
0"8 1134 93"2 1086 98"0 1134 97"4 
1"0 784 95"8 862 99"4 990 98.6 
1"2 460 97.0 651 100 802 99"1 
1"4 262 98"9 468 100 648 99.5 
1"6 152 100 325 100 499 100 
2.0 45 100 167 100 295 100 
2.4 13 100 67 100 169 100 
2"8 2 100 31 100 97 100 
3"2 13 100 50 100 
3"4 9 100 42 100 
3-8 3 100 18 100 

Table 3. Number of triplet relations (nr) and pereentage 
of  correct relations for a 200-atom model structure 

tanh Equation (8) Equation (7) Equation (15) 
larg[ nr. % nr. % nr. % 
0.6 1298 86.7 1092 90-6 1079 89.6 
0.8 758 89.2 769 93"2 843 91.3 
1.0 364 90.9 491 93-9 596 93.8 
1.2 127 89.0 277 97.1 362 95.6 
1.4 52 82.7 167 97.6 224 96.4 
1.6 5 100 88 96"6 128 96.9 
2-0 24 100 41 95.1 
2.4 4 100 12 100 
2.8 2 100 4 100 
3"2 4 100 
3"4 4 100 

Table 4. Number of  triplet relations (nr) and percentage 
of  correct relations for a 300-atom model structure 

Equation (8) 
nr. % 
885 86.0 
668 91.5 
333 89.5 
130 90.0 
55 100 
9 100 

Equation (7) Equation (15) 
nr. % nr. % 
710 90.8 733 90"0 
566 94"3 625 92"8 
416 96-6 475 95"4 
268 97"8 331 98"2 
170 97-1 229 97-8 
92 97-8 150 98"0 
50 100 61 100 
22 100 36 100 
11 100 16 100 
5 100 1 100 
4 100 1 100 

8. A constrained formula 

In order  to define the sign of  EHIEH2EHI+H2, (7) re- 
quires the availability of  a number  of  triples (EK, 
Enl+K, Ena+n2+K). The data  shown in Tables 1-4 were 
calculated by allowing K to vary over all the available 
set of  reflexions. 3055, 4617, 7799, 13921 independent  
normalized structure factors constitute the sets of  re- 
flexions generated for the model  structures with N = 70, 
100, 200, 300 respectively (see Table 5). 

Table 5. Application of  (7) and (15) to the four model 
structures: some experimental data 

Number of 
independent 

Number of reflexions 
independent available 

reflexions for (15) Values of (16)Values of (16) 
N used for (7) when ~=0.8 when ~=0.0 when ~=0.8 
70 3055 1604 0-327 0-651 

100 4617 2365 0.296 0.632 
200 7799 4035 0.324 0.558 
300 13921 7319 0.396 0.578 

In order  to reduce comput ing time, a modification 
of  (7) would be desirable which permits the use of  a 
limited subset of  the experimental da ta  in obtaining 
the sign of  the triplets without  too great a penalty. In 
this connexion we observe that  the more  ( E [ - 1 )  
(E~a+K--1) (E2a+H2+K - 1) differs f rom zero the more  
the triples EK, ErII+K, Ent+nz+K help (in a probabilistic 
sense) in determining the sign of  EnaEn2Enl +n2" There- 
fore a basis for selecting a properly chosen subset of  
da ta  should be the requirement  that,  for each EK, 

Enl+K, Ena 4-u2+~, 
[ E Z - I [ > c z .  

The constrained probabil i ty value defined under  these 
conditions will be 

P+(En~En2Ena+n2 I I E ~ - I I > ~ ,  Ig~a+K--11>~, 
2 ~) (15) I E n a + n 2 + K - 1 l >  • 

It has been an empirical observation in this labora tory  
that  good accuracy in the determinat ion of  the signs 
of  the triplets may  be obtained even when c~>0-8. 
Therefore (15) has been calculated when ct=0.8 for all 
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the model structures: the outcome is shown in Tables 
1-4. Under this condition the number of reflexions 
available for (15) for each model structure is shown 
in Table 5. From Tables 1--4 we deduce that the con- 
strained formula improves the Cochran-Woolfson re- 
lation even if it is a little worse than (7). Its use seems 
advisable mostly when computer time must be saved 
by the crystallographer. It should be emphasized that 
(15) is not the only way of obtaining constrained for- 
mula, i.e. in the M ( D - K S )  formula (3), which also 
purports to be an improvement over (8), a different 
constraint is suggested. However (3) and (15) [or (7)] 
are well correlated: specifically, if K is such that the 
IEKI and IEHx+KI are both large, then both (3) and (15) 
yield positive or negative estimates for EN,En2En,+n2 
according to whether IEn,+n2+KI is mostly large or 
mostly small, respectively. In order to simplify this 
paper we will deal with this kind of theoretical aspect 
in a following paper, where the non-centrosymmetric 
case will be explored. 

9. The limits of our approach 

For a given structure (7) may improve (8) only mar- 
ginally when the set of experimental data is confined 
to very low scattering angles. In this case in fact the 
average number of triples (IEKI, IEn,+,II, IEH,+i,2+KI) 
available for use in (7) for each triplet EnI, En2, 
En,+n.  will not be large enough to improve the Coch- 
ran-W'oolfson relation significantly. An a posteriori 
measure of this correction may be deduced from the 
quantity 

~, IA~,.n, I I ~ BH,..2, (16) 
H1,H2 HI,H2 

where the summation is to be taken over the set of 
the estimated triplets. 

In Table 5 we give the experimental values of (16) 
for the four model structures when (7) and (15) are 
calculated. In our experience, values of (16) greater 
than or equal to 0.15 normally lead to notable gains 
in reliability in comparison with the Cochran-Woolf- 
son relation. So (7) should make the solution of a crys- 
tal structure easier when the number of available re- 
flexions (expanded to include all equivalent reflexions) 
is larger than 40N. 

A question arises: '(7) draws its advantage from the 
fact that it is able to use the information contained in 
all reciprocal space. Is then its effectiveness indepen- 
dent of the structural complexity, provided a suffi- 
ciently large number of reflexions is available 
(.-. 100 N)?' An affirmative answer to the question 
would require the following statement: 'the effective- 
ness of (7) is directly related to the value of (16). If 
the number of available reflexions is large enough to 
yield large values of (16), the effectiveness of (7) is 
secured independently of the structural complexity'. 
This statement has not in reality been verified. 

We observe in this connexion: (a) in spite of the 
values of (16), (7) is more effective in the model strut- 

tures with N =  70, 100 rather than when N =  200, 300, 
and (b) the values of (16) arising from the use of (15) 
are larger than the corresponding values obtained by 
(7). In other words, in spite of the smaller number of 
triples (IEKI, IEnl+K[, [Enj+n2+KI) checked by the con- 
strained formula, the Cochran-Woolfson relation is 
more severely modified by (15) than by (7). (7) never- 
theless, is more reliable than (15). 

A theoretical answer to the lack of effectiveness of 
(7) as a function of the structural complexity may be 
given in terms of the probability theory. As the atomic 
coordinates were assumed in our approach to be in- 
dependent random variables which are uniformly dis- 
tributed, all the E factors involved in the distribution 
can be themselves considered random variables. The 
quantity (E 2 -  1) (E2,+~ 1) 2 

- -  (EHI+H2+ K-  1) is then a 
function of random variables whose conditional dis- 
tribution, for fixed IEn,[, [En21, [En~+n21, may be easily 
derived from (A1). Also the quantity 

<A>= ~. (E~- I) (E2,+,~ - I) (E2Hx+Hz+K - I) 
K 

is a function of random variables, for which we obtain 

P +[S(<A>)S(E.,E.2E., +-2)1 ___0-5 

I<A> . EI, i Et,2En, + n21 
-I-0"5 than NI/N (17) 

The left-hand side of (17) denotes the probability that 
the sign of <A) coincide with that of the triplet. It is 
evident from (7) that the more complex the structure 
becomes, the smaller, in the average sense, is the prob- 
ability of the sign coincidence between <A) and the 
corresponding triplet. 

In conclusion, (7) enlarges the range of the struc- 
tures to which direct methods may be succesfully ap- 
plied. (7) in fact is less sensitive than (8) to the struc- 
tural complexity and to structural regularities, since 
it makes use also of the information in all reciprocal 
space. Its effectiveness nevertheless decreases with N: 
the more complex the structure the less the values of 
<A> are closely distributed around the corresponding 
En,En2Ena+n2 values. In our opinion, structures with 
up to 100 atoms in the asymmetric unit may in favour- 
able conditions be solved routinely by (7) in a multi- 
solution procedure. 

10. A procedure for the quadrupole methods 

Burzlaff & B6hme (1975) recently described a formula 
which is used to derive from the P+ values of the 
triplets which constitute quadrupoles an improved 
probability value for a chosen triplet. The method 
would be of great advantage in large structures if a 
significant percentage of the negative triplets would 
present input values of P+ < 0.50. Although (7) seems 
more suitable than (8), the percentage of the triplets 
defined to be negative by (7) is in general too small. 
Furthermore, for a given structure we do not know 
a priori the real percentage of negative triplets. How- 
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ever from the triplet theory the expected value Pt of 
this percentage may be derived, whatever the structure 
may be. The set of experimental G values provided by 
(7) should then be modified in such a way as to yield 
a percentage of negative triplets close to Pt. 

A simple way is to modify each value Gu,. u2 by a 
quantity proportional to 

1 
Qu,, n2 ~- - - ~  I En,En2En, + n2l ( AH1, H2/ BH,, H 2) 

so that the set of values 

G~l, n2 = Gut, "2 + Q-a, u20 

yields a percentage of negative triplets close to Pt. 
This procedure, emphasizing the role of the terms 
IE.,l,lEu~+.,I, IE.~+.~+KI, may introduce errors in the 
probability values. These errors may subsequently be 
corrected by application of the quadrupole method. 

The determination of the factor 0 is a trivial task if 
Pt is known. In its turn Pt may be easily defined for a 
given structure for any threshold value E, (only the 
lEI > E~ are used to obtain the Y z relationships). 

Let us denote by g2 the set of the couples (EK, 
Eu+K) which (a) lie in the third quadrant of the plane 
(E~,Eu+K); (b) have moduli larger than Es; (c) form 
triplets with a fixed H reflexion whose [El is larger 
than E~. 

Then the integral (Giacovazzo, 1974) 

I (Em E~, N) = P ( E~, Eu + K)dEKdEu + K 

represents the population of the normalized structure 
factors which belong to f~. ~(~) is the vth derivative of 

_ 1 ~x 
re(x) I/(2rc) .)-oo exp ( -  tz/2)dt. 

In its turn 

1 exp ( - E ~ / 2 )  Yt (E , ,N) -  V(2x ~ ~, 

o°° [¢(~,(_Es)12v! (-~N)" x ~ dEn (18) 

N =30o._.~ 
.40 N= 2 O O . - - ~  

E~ 

Fig. 2. Percentage of negative triplets as a function of the 
threshold value E~. 

represents the population of the couples (EK, Eu + K) be- 
longing to I2 which form positive triplets with all the 
En factors whose moduli lie in the range (Es, co). 

The population of the couples belonging to (2 which 
form positive and negative triplets with all the Eu fac- 
tors whose moduli lie in the range (Es, co) is (Giaco- 
vazzo, 1974) 

S Y2(E~,N)= 1 exp ( - E ~ / 2 )  

°° [m~')(-E*)]2 ( - ~ ) [ 1 -  (1)V]dEn. (19) x ~ v! 
V=0 

From (18) and (19) the expected percentage of the nega- 
tive triplets when only the normalized structure fac- 
tors with [El > Es are used is 

P,(Es, N)= 1 - Y,/Y2 . 

Owing to the fast convergence of the series involved, 
Y1 and Yz are easily computable. When the first eight 
terms in the summations in YI and Y2 are calculated, 
0.04 s should be consumed by an IBM 370/158 in or- 
der to calculate Pt. In Fig. 2 we have plotted some 
curves, each corresponding to a single value of N. So, 
for a structure with N =  100, the expected percentage 
of negative triplets when Es = 2.2 is 0.03; this percent- 
age increases to 0.15 when E~= 1.60. 

II. Conclusions 
A probabilistic theory is described which may be used 
to derive from the distribution P(En,,En2,ENI+Hv 
EK, Ent+K, Erq+H2+K) a probability value for the sign 
of En,EnzEna +n2. The reliability of the sign indication 
depends on a statistical moment of order 

]/U ]/U ] ' 

one or more moments of order 

1/N {i.e. ~ [(EZ~- 1) (EZn,+K--1) 
K 

+ ( E ~ -  1) ( E h , + . 2 + ~ -  l) 

+(E~I+~  1) 2 -- ( E l t t  +H2+K--  1 ) ]} ,  

one or more moments of order 1/N]/N 

[i.e. ~ ( E ~ -  1) (Eh ,+s - -  1) (EZ,+u2+s--  1)]. 
K 

The phase relations so stated markedly improve the 
Cochran-Woolfson relation and seem especially suit- 
able to the structures in which the latter relation fails. 
The new formulae consume much more computing 
time than the Cochran-Woolfson relation. Neverthe- 
less new computing techniques such as that described 
by Busetta & Comberton (1974) seem able to reduce 
this disadvantage. 
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A P P E N D I X  A 

The Fourier transform of (6) gives 
1 

P(E~,E2,...,E6) = (27r)3- 

× exp [ ' 2 2 - z ( E . + E z + . . .  +E62)] {I 

i 
+ ~ [E~E~E~ + E~E.E~ + EzE~E6 + E~E.Ed 

1 
8N [H4(E~)+ H4(E2)+... + Ha(E6)] 

1 
+ -~ [E~E~E4E,, + E,EaE4E~ + EIE3E~E6] 

1 
+ ~ [ ( E  2- I) (Ez 2- I) (E 2- I) 

+ (E 2-1)  ( E ] -  1) (E 2 -  1) 

+(E 2-1)  (E 2-1)  (E~- 1) 

+(E3 ~- I) (E 2-1) (E 2- I)+ 2(E 2- I)EzEaE4E5 

+ 2E~(E~- I)E3E~E6 + 2E, E~(E]- I)E4E~ 

+ 2ExEzEg(E~- I)E6 + 2E~E3(E 2- I)EsE6 

+ 2E2E3E4Es(E 2 - l)] 

I 
+ 6NI/N [H3(EOH3(E2)H3(Ea) 

+ H~(E3H~(E4)H~(E~) + H3(Ez)H~(E~)H~(E~) 

+ H3(Ea)H3(E4)H3(E6)+ 3H3(E.) (E~- 1) (E32- 1) 
+ E4E5 + 3H3(EOE2E3(E 2-  1) (E 2 -  1) 

+ 3(E~ z -  1)H3(EE) (E32- 1)EsE6 

+ 3EIH3(Ez)E3(E 2-  1) (E~- 1) 

+ 3(E~- l) (E 2-  1)H3(E3)E4E6 

+ 3E~E2H~(E3) ( E ~ -  1) (E~- 1) 
+ 3(E 2 -  I)E2(E]- I)H3(Es)E6 

+ 3Ex(E 2-1)E4Ha(Es) (E 2-  1) 

+ 3(E 2-1)E3H3(E4) (E 2-  I)E 6 

+ 3E,(E 2-  I)H3(E4)Es(E~- 1) 

+ 3(E 2-1)E3Eg(E 2-1)H3(E6) 

+ 3Ez(E 2-  1) (E~- 1)EsH3(E6) 

+6(E, 2-  1) (EZ2 - I)E3E4(EZs - 1)E6 
+6(E 2-1)E2(E 2-1)  (E4 2 -  1)EsE6 

+ 6E,(E 2 -  1) (E 2-  1)E4Es(E 2-  1) 

+6E~E2E3(E 2-  1) (E 2 -  1) (E~- 1)] 

1 
2NVN [H3(E~)E2E3 + E, Ha(E2)E3 + E, E2Ha(Ea) 

+ H3(E,)E4Es + cyclic terms 

+ H3(E2)EsE6 + cyclic terms 

+ H3(Ea)E4E6 + cyclic terms] 

The 
E31 E4,Es, E6) is easily obtained from (A1): 

P(Et, Ez, E3 I Ea, Es, E6) 

P (EI, E2, E3, E,, E,, E,, E6) 

1 2 
+ ~ - ~  [(E. - 1) (E22 - I)E3E4E6 

+ E.(EZz - I) (E32 - I)E4Es + (E 2 - I)E2(E 2 - I)EsE6 

+ (E 2- I )Ez(E24 - I)EsE6 + EIEEE3(E2, - I) (E 2- I) 

+(Ef - OE3E4(E~- I)E6+ EI(E~- I)E4E~(E~- I) 
+(E 2- I)E3E4(E~- l)E6 + E.EzE3(E 2- i) (E z-  I) 

+ EIE2E3(E]- I) (E 2- I)+ E2(EZ3 - I) (E 2-1)EsE6 

+ EI(E~- I)EgEs(E 2- I)] 

l 
8NI/N [H~(EI)E2E~ + Hs(EOE4E~ 

+ H,(EOE.E~E~ 

+ H.(E3E3E, E6 + E.H~(E2)E~ + E~H,(E2)E4E~ 

+ H~(E~)E~E6 + H,(Ez)E~E, E6 + E~E2H~(E~) 

+ EIH,(E~)E,E~ + E~H,(E~)E~E~ + H~(E~)E4E~ 

+ E.E~E~H,(E,)+ E~H~(E,)E~ + E~H,(E4)E~E~ 

+ E~H~(E,)E~ + E.E~E~H4(E~)+ E.E,H~(E~) 

+ E~H~(E~)E~ + E~E.H.(E~)E6 + E~E~E~H.(E6) 

+ E.E,E~H,(E6)+ E~E~H~(E6)+ E3E.H~(E6)]} (A~) 

conditional joint probability distribution P(E,. E2. 

(A2) 
,E2,. •., 

oo 

The denominator of (A2), after some calculation, be- 
comes 

1 
(-2~3. exp [--}2(El + E2+ E62)] (]/~2~) 3 

x {1-  [H4(E4) + H4(Es) + H4(E6)l/8N}. 

Finally, we obtain the conditional expected value 

<EIEzE31E4.Es.E6> 

1 

x - - ~ l  {1+ ~- I [(EZ4-1)(EZ-I)(E2-1) 

+ (E 2- I) (E 2- I)+(E 2- I) (E62- I) 

+ (E 2- I) (E62- I)] 

l [H4(E4)+ Ha(Es)+ H4(E6)] } (A3) 
8N 

Likewise 



C. G I A C O V A Z Z O  975 

2 2 2 <E,E2Ea[E4,Es, E6) 

1 - [Ha  (E4) + H4(Es) + Ha (E6)]/8N 

× { 1 -  [Hg(E¢) + H¢(Es) + Hg(E6)]/8N 

+ [(E42- 1) (E 2 -  1) +(E42- 1) (E~-  1) 

+ (E 2 -  l) (E 2 - 1 ) + 4 ] / N } .  (A4) 

Since the conditional probability distribution of the 
random variable R=EIEzEa may be expanded in a 
Gram-Charlier series (Cram6r, 1951), we may write 

1 [ - ( R -  <RT] 
P(RIE4,Es, E6)-  al/(2;¢) exp , ~_~-2 -j + . . .  

where R is given by (A3) and 

2 2 2 a2= <E ,E2E31E,, Es, E6) - <E, E2E31E4, Es, E6) 2 

I 

1 -  [Ha(E4)+ H4(E5)+ H4(E6)]/SN 

x { 1 -  [H4(E4) + H4(Es) + H,(E6)]/8N 

+ [(E42-1) (E 2 -1 )  + (E42-1) (E 2 -1 )  

+ (E z -  1) (E 2 - 1 ) +  3]/m}. (AS) 

For the sake of simplicity we have neglected in (A5) 
the I /N 2 and higher-order terms arising in (E~E2E31E4, 
Es, E6) 2 and have employed also 

{ l -- [H4(E4) + H4(E5) + H4(E6)]/8N) -z 

"" { 1 -  [H4(E¢) + H4(E5) + ng(n6)]/8N} -~ 

These approximations may occasionally result in some 
error, but in practice are not critical. 

As P+ =(P_/P+ + 1) -1, we obtain 

_ :  1 1 P+-~-+~- tanh -VN- IE, E2E31 

1{ 1 
x .... 1 + N-  ( E ] -  11 (E 2 -  1) (E62- 1) 

1 
+ ~ [(E42-1) (E 2 -  1)+(E42- 1) (E62- l) 

+ (E 2 - 1 )  (E 2 -  1)] 

1 
8N [H4(E4) + H4(Es) + H4(E°)]} ' (A6) 

where 

1 
Q =  1+ ~ -  [(E24-1) (EZ-1)+(EZ4-1) (E~-  I ) 

+ ( E ] - I ) ( E ~ - I ) + 3 ]  

1 
- -  8 ~  [ H 4 ( E 4 )  + H4(Es) + H4(E6)]. 

APPENDIX B 

From the joint probability distribution P(En, E2n, EK, 
En+K, E2n+K) we obtain 

(R ) =  ((E~ - 1)E2nIEI~, EH + K, Em + K) ~_ 1/ ]/N 

+ (2(E~-1)  (EnZ +K - 1) (E~n+K-- 1) 

+ EKE2 a 2 +K(Efi+K-- l ) [ (Ed-  1) + (EZn+x - 1)1 

-- [H4(EK) + H,(En +K) + H,(E2a+~)]/8 

+ 2 ( E ~ -  1) (EnZ +K - 1)+ 2(E~+K-- 1) (EzZa+K - 1) 

+(E~--  1) (E~.a+K-- 1)}/NI/N, (B1) 

,~z_~ ( (E~-  0~E~alE,,, E,. +,,, E~. +,,) 
~_ 2{ 1 + 3 / 2 N -  [H4(EK) + H¢(En + ~) 

+ H4(E2rI + K)]/SN 

+ 2E~E2n +Id3 + 2(EI~+ ~ -  1)]/N 

+2 [ (E~-  1) (EZ+K-- 1) 

+(E~+K-- 1) (E~n+K-- 1)]/N 

+ ( E ~ -  1) (E~u+K-- 1)/N}. (B2) 

As in Appendix A, we calculate here the expression 
for [RI(R)/a 2. In the numerator as well as in the 
denominator of this expression a seminvariant appears 
(i.e. EKE2n+K) whose sign is unknown. In the quartet 
theory (Giacovazzo, 1975b) a similar effect occurred 
(i.e. the seminvariant Eh+kEh+,Ek+~ appeared): we 
showed in that paper that the sign of the seminvariant 
does not affect too heavily the sign of the quartet. On 
this ground it is easy to derive (14) from (B1) and (B2). 
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According to Hermann [Z. Kristallogr. (1929), 69, 533] the crystal lographic space groups G have two kinds 
of maximal subgroups H, isotranslational ('zellengleich') and isoclass ('klassengleich'), i.e. subgroups of 
the same class but with different translation lattices. The maximal subgroups of index two are easily 
found from the existing tabulations of magnetic space groups. The paper focuses mainly on isoclass 
subgroups with increased unit cells. Also, a method is described for deriving directly from the crystal- 
lographic space groups all maximal isoclass subgroups of index two and of index four with increased 
unit cells. 

Introduction 

Hermann (1929) was first to distinguish between two 
categories of maximal subgroups H of space groups G: 
(a) subgroups H having the same translation lattice as 
G ('zellengleich'), (b) subgroups H having a different 
translation lattice, but belonging to the same crystal 
class as G ('klassengleich'). 

Subgroups of category (a) were first presented by 
Hermann in lnternationale Tabellen zur Bestimmung 
yon Kristallstrukturen (1935), so many crystallographers 
will be familiar with them. Subgroups of category (b) 
look more mysterious. It might even be surprising to 
learn from this paper that maximal subgroups of cat- 
egory (b) were first tabulated nearly 20 years ago al- 
though in a form in which the fact is difficult to rec- 
ognize. Indeed, we shall show in Part I that, with little 
calculation, maximal subgroups of category (b) can be 
read directly from the known tabulation of magnetic 
space groups having an antitranslation element (Ope- 
chowski & Guccione, 1965; Belov, Neronova & Smir- 
nova, 1957; abbreviated OG and B respectively). 

In Part II, we state the rules for deriving maximal 
subgroups of category (b) directly from the crystal- 
lographic space groups. The subgroups considered are 
of index two and four. 

Part I 
I. 1. Definitions 

Two cases are to be considered under category (b): 
(bl) the subgroup H has an increased unit cell; this 
case mainly will be considered here [for completeness 
the other cases, (a) and (b2) are dealt with in the last 
remarks of § I. 4.], (b2) the space group G is centred 
while H has partly or wholly lost the centring, the case 
for which the unit cells remain the same. In this respect 
the wording 'zellengleich' for category (a) is not par- 
ticularly satisfactory. We would recommend the ter- 
minology 'isotranslation' and 'isoclass' subgroups for 
'zellengleich' and 'klassengleich' respectively. 

Let G be a group, H a subgroup of G, g an element 
of G, but not contained in H. If 

G = H + g H ,  (1. 1) 
H is a maximal subgroup of index two of G. 

(a) If G is a space group and g-- (a[r~), a space group 
element, where a is a rotation, r~ a translation, then 
H is a subgroup of category (a). 

(b) If G is a space group and g=(e] ta)  where e is 
the identity element and tG a (non-zero) lattice trans- 
lation, not contained in H, then H is a subgroup of 
category (b). 


